

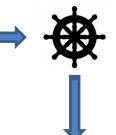
Application of standardized flowcytometry as a first step in the diagnostics of PID

Name | Joris Vanderlocht, Medical immunologist

Department | central diagnostic laboratory, MUMC+

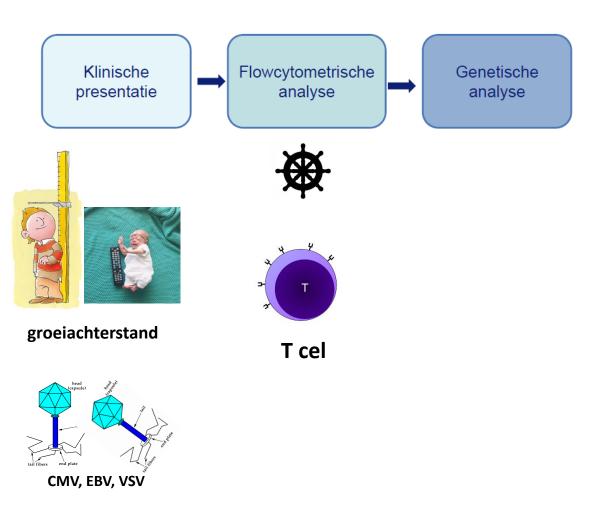
Standardized flow cytometry in the diagnostics of primary immune deficiencies

- The value of flowcytometry in the current diagnostic process
 - Severe combined immune deficiency (SCID)
 - Common variable immune deficiency (CVID)
- Future applications of flowcytometry in immune deficiencies
 - Immune monitoring as a tool to predict complications
 - Proof of concept: Fingerprint of viral infection in a healthy control, GVHD, CMV
 - Complications in CVID → profylaxis?
 - Immune monitoring as a tool for adjusted therapy in secundary immune deficiencies

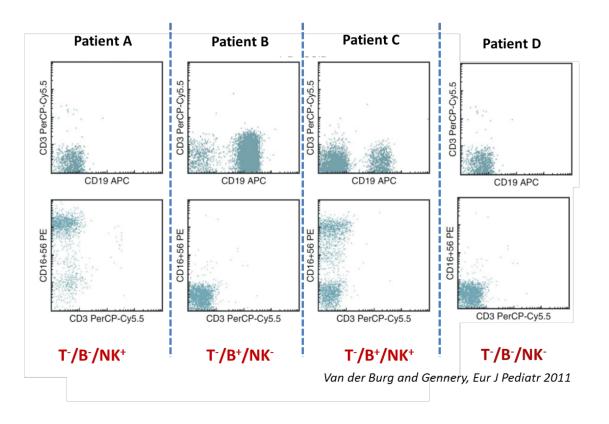

Protocol for diagnosing primary immunodeficiency

Patient-centred screening for primary immunodeficiency, a multi-stage diagnostic protocol designed for non-immunologists: 2011 update *Clin Exp Immunol 2012;* **167**(1):108-19.

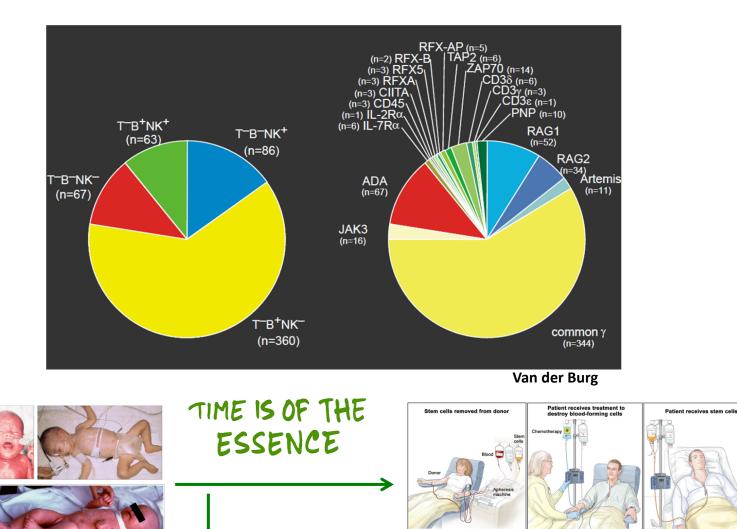
1 component of immune system


Typical infections Typical symptoms

Protocol for diagnosing primary immunodeficiency


Patient-centred screening for primary immunodeficiency, a multi-stage diagnostic protocol designed for non-immunologists: 2011 update Clin Exp Immunol 2012; 167(1):108-19.

Severe combined immune deficiency (SCID)

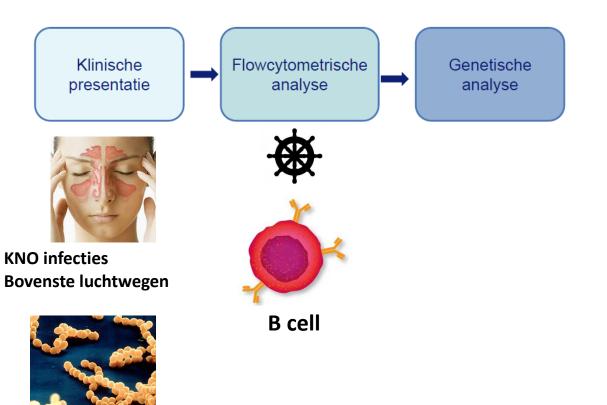


Importance of genetic conformation in SCID

- Genetic counseling and analysis of carriers in the family
- Early detection of affected siblings
- Patient compliance

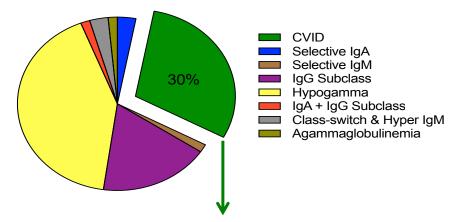
Flow cytometric phenotype \rightarrow link to the genetic defect

© 2011 Terese Winslow LLC U.S. Govt has certain rights

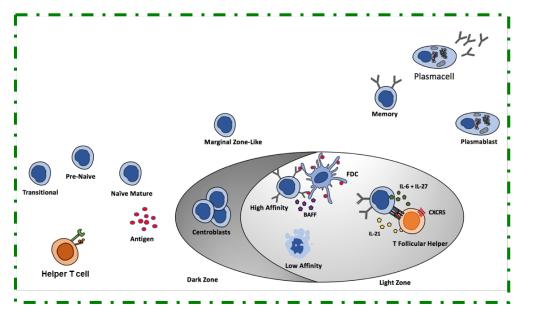

Flow cytometry → Swift diagnosis Perinatal screening → TREC-analysis

Protocol for diagnosing primary immunodeficiency

Patient-centred screening for primary immunodeficiency, a multi-stage diagnostic protocol designed for non-immunologists: 2011 update Clin Exp Immunol 2012; 167(1):108-19.

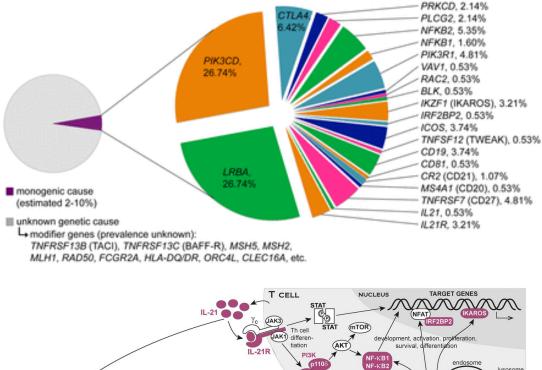


Common variable immune deficiency (CVID)

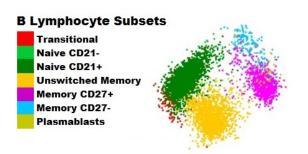


Bacteriën Streptococcen Heamophilus infl

Common Variable ImmunoDeficiency

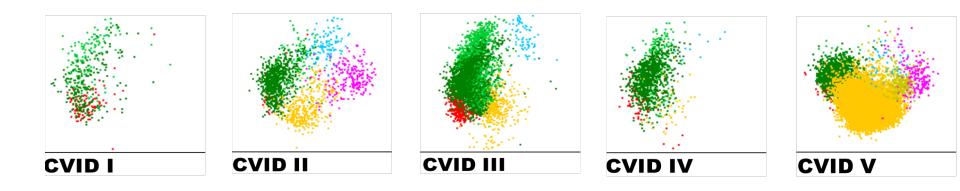


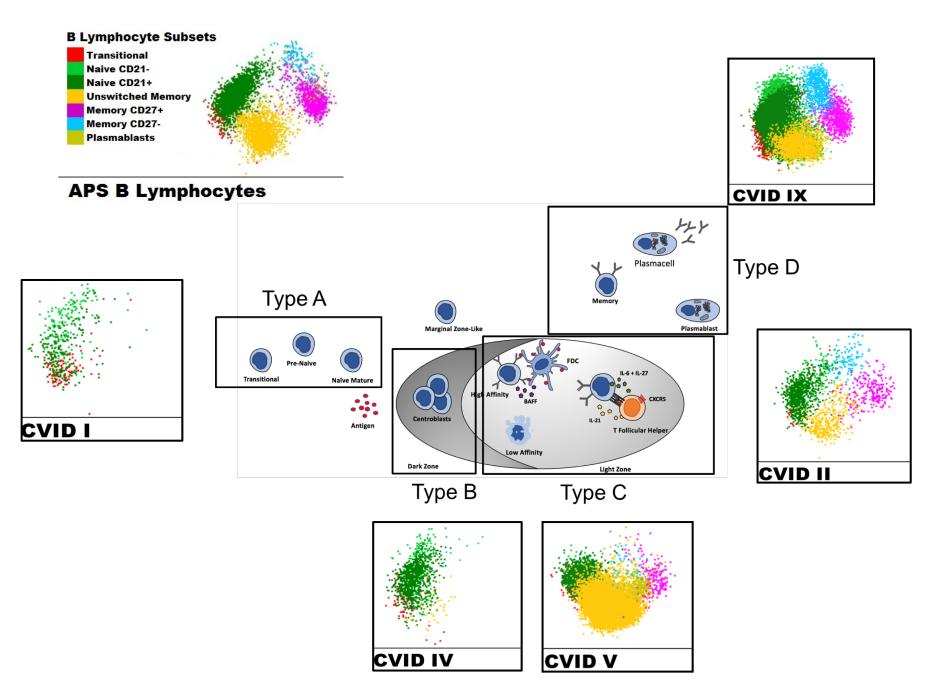
Defects in B cel maturation


- Primary antibody deficiency
 - Insufficient production of IgG & IgA
- Impaired humoral responses
- Recurrent upper airway infections
- Underlying genetic defect (±20%)
- Heterogeneity

- differentiation tolerance TWEAK LRBA CD70 CD27 ICOS ecycling TCR C3d coated BAFF-TWEAK CD21 bacterium **CD28** CTI A-4 **CD19** BAFF-R TACI BCMA Leu13 T cell T cell inhibition T cell activation **CD20** TLR7/9 CD27 CD70 BCR ICOS-L (P3 DAG CD8 Ye IL-21R MHC II BI NK CD80/ lac JAK3 JAK1 Ca2transmembrane TRAFS **CD86** Igβ Ca2+ transport TRAFS GC reaction Ig class switching p85a) MyD88 terminal differentiation PI3K **p110**δ IRAK STAT ΡΚΟδ P. RelB p100 development B CELL activation (AKT NF-KB2 p65 STAT proliferation p50 survival NF-KB1 survival (RelB) p52) differentiation Ig class switching (mTOR) differentiation proliferation survival differentiation survival GC reaction Ig class switching differentiation differentiation development Ig class switching apoptosis activation . la class switching IRF2BP2 tolerance tolerance IKAROS NFAT NUCLEUS W S TARGET GENES
 - Bogaert et al., 2015, 59,575-590

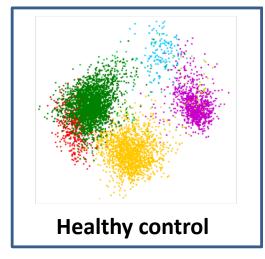
- Multiple genetic defects can cause CVID
- Not in all patients genetic defect is identified (20-30%)
- CVID causing genetic defects in both T cells and B cells





Infinicyt[™] software available in the US from ALPCO through a partnership with 🥮 cytognos

APS B Lymphocytes

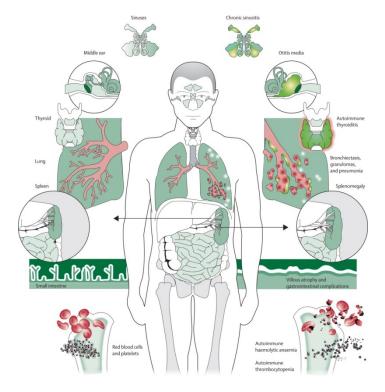


Patient with known genetic defect

B cells

- Identification of patients based on the immune phenotype with genetic defects in the same phase of B cell development?
- Similar clinical phenotype?

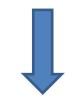
B cells


	TACI (1950)	CVID X (1971)
IgG	< 1,1 g/L	< 1,1 g/L
IgA	< 0,5 g/L	< 0,1 g/L
IgM	< 0,1 g/L	0,17 g/L
Infections	Sinopulmonary	Sinopulmonary Gastro-intestinal
Auto immune disease	-	-
Granulomatous infiltration	-	-
Lymphadenopathy/ Splenomegaly	Splenomegaly	Generalized + splenomegaly
Malignancies	Hodgkin	- (WES nl)

Importance of flow in the current diagnostic process

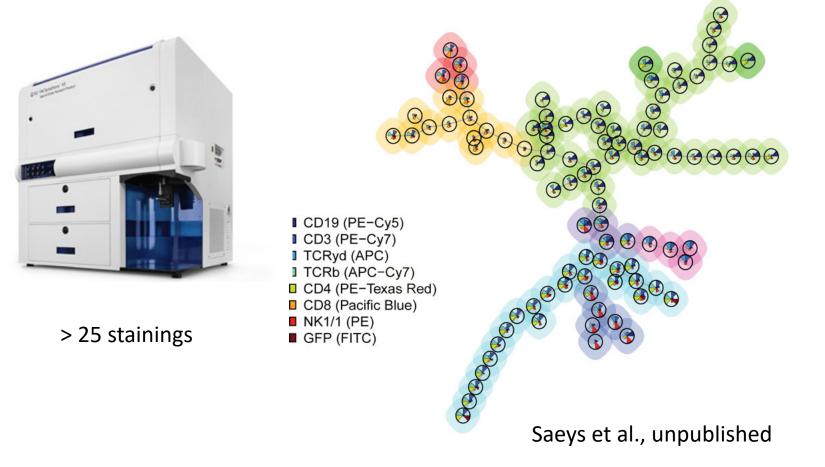
Standardized flow cytometry (euroflow)

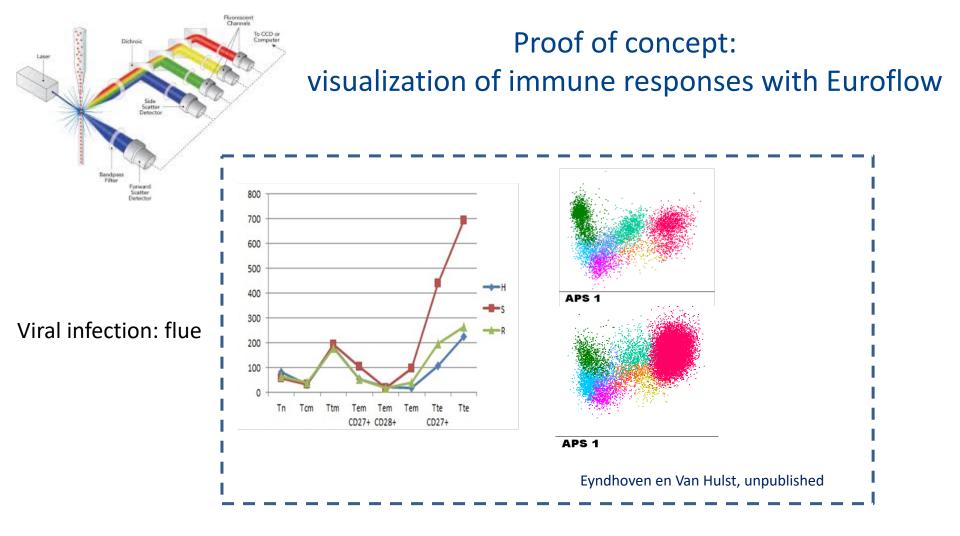
- Allows localization of defects in the immune system in CVID
 - Based on immune phenotype \rightarrow localisation of the genetic defect
 - Also applicable in case the genetic defect cannot be identified (for CVID <75% of cases?)
- **Patient database** allows comparison with other patients (most PID are rare diseases)
- In CVID knowing the defect does not (yet) have a treatment consequence


Importance of flow in the future diagnostic process

Park et al., Lancet (2008) 372,489-502

Complications in CVID:


- 1. Infection
- 2. Granuloma
- 3. Autoimmunity
- 4. Lymphocytic infiltration/proliferation
- 5. Malignancy



- 1. Associate with different immune responses!
- 2. Require therapeutic intervention

Is it possible to predict whether patient is at risk for complications by immune monitoring

Importance of flow in the future diagnostic process

GVHD or CMV after HSCT

Importance of flow in the future diagnostic process

- Flowcytometry not only for the diagnostic process but also for patient monitoring
 - predict complications
 - Tool for patient management

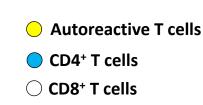
Type of clinical complication	Prevention	Screening	Treatment
Infectious	Ig replacment; prophylactic antibiotics; vaccination	Patients' awareness; sputum monitoring; routine visits	High dose lg; threaputic antibiotics
Pulmonary	Control of infection; high dose Ig	Spirometry; HRCT; routine visits	Endoscopic sinus surgery; inhaled corticosteroids; anti-inflammatory antibiotics; IL-2 therapy; B ₂ agonists; leukotriene receptor antagonists; lung transplantation
Lymphoproliferative	-	Lymph nodes biopsy; spirometry; imaging; routine visits	Systemic corticosteroids; hydroxychloroquine; immunosuppressive agents
Autoimmunity	Ig replacment?	CBC, diff PBS; thyroid examination and thyroid function; routine visits	Corticosteroids; anti-CD20 monoclonal antibodies; TNF-α inhibitors
Gastrointestinal	Control of infection, autoimmunity and lymphoproliferative complications	Upper and/or lower endoscopy and yearly ultrasonography; routine visits	Immunomodulators; TNF- α inhibitors
Neopelasis	Helicobacter pylori eradication; decreasing unnecessary irradiation	Routine cancer screening; screening by endoscopy; bone marrow examinations	Routine chemotherapy; rituximab protocols; surgical modalities; allogeneic stem cell transplantation
CBC: Complete blood count;	HRCT: High-resolution computed tomography;	Ig: Immunoglobulin; PBS: Peripheral blood	d smear.
Medscape		Source: Expert Rev of	Clin Immunol © 2013 Expert Reviews Lto

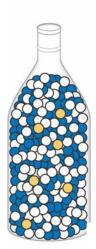
Standardized flow cytometry in the diagnostics of primary immune deficiencies

- The value of flowcytometry in the current diagnostic process
 - Severe combined immune deficiency (SCID)
 - Common variable immune deficiency (CVID)
- Future applications of flowcytometry in immune deficiencies
 - Immune monitoring as a tool to predict complications
 - Proof of concept: Fingerprint of viral infection in a healthy control, GVHD, CMV
 - Complications in CVID → profylaxis?
 - Immune monitoring as a tool for adjusted therapy in secundary immune deficiencies

Primaire immunodeficiënties (PID):

Oorzaak van de immunodeficiëntie ligt bij het immuunsysteem zelf.


- Meestal aangeboren.
- Zeldzaam.
- Vaak in één specifiek deel van het immuunsysteem
- Deze ziekten geven meer inzicht in het functioneren van het immuunsysteem.


Secundaire immunodeficiënties:

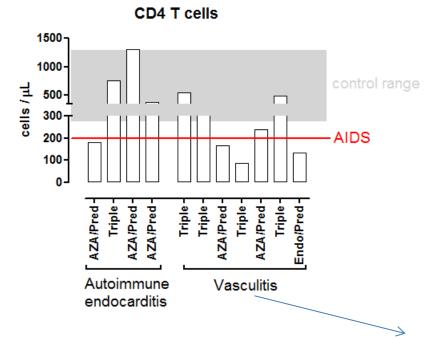
Oorzaak van de immunodeficiëntie ligt buiten het immuunsysteem.

- Meestal verworven.
- Vrij frequent.
- Meerdere delen immuunsysteem diffuus aangedaan

Original population

Bottlenecking event

Immune suppression



Surviving population

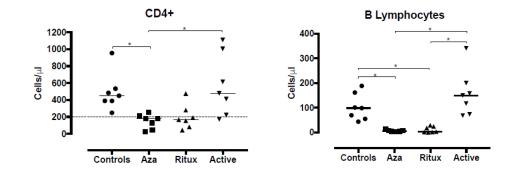
Immune compromised Disease symptoms

Anca associated vasculitis

Azathioprine-Regimen

Pulsed-cyclophospamide Corticoids Azathioprine maintenance

> Immune profile Proliferative responses Cytokine secretion profile TCR repertoire TREC analysis


Rituximab-Regimen

Pulsed-cyclophospamide Corticoids Rituximab

Glenn van Hulst

Disease promoting immune populations

Controls

Aza

Ritux

Active

CD8+ Natural Killer Other 4000-600immune populations 3000-2000 2000-1500-1000-⁴⁰⁰⁻ Cells/⊓ 200-1000-500-0-0-Controls Aza Ritux Controls Aza Active Ritux Active CD8+ Naive CD4+ Naive 500-400 450-200 250 200 200 150 150 100 230 200 200 200 **Future** 100-Immune competence 50-50 Ritux Active Aza Controls

Standardized immune phenotyping (Euroflow) can be a powerful tool for therapeutic immune monitoring

Immune monitoring after 2 standard immune suppressive regimens for AAV

- T (CD4 + CD8) and B cells are equally affected by both regimens
- Azathioprine \rightarrow more severe impact on CD8+ and NK (viral defense + cancer)
- Naive T cells are not spared during immune suppression
- Therapy also associates with phenotypic alterations \rightarrow functional?

Combining standardized immune phenotyping during therapy with

- **1. Patient outcome:**
- Development of database of patients and controls
- Identify patients that are at risk for complications

Immune phenotyping will facilitate decision making during therapy AND will provide novel tools in the search of improved therapeutic regimens

Importance of flow in the diagnostic process

Standardized flow cytometry (euroflow) gives swift information on the status of the immune sytem

- Allows localization of defects in the immune system
 - Based on immune phenotype \rightarrow localisation of the genetic defect
 - Also applicable in case the genetic defect cannot be identified (for CVID <75% of cases?)
 - Not always impact on treatment

Future application of flow cytometry \rightarrow immune monitoring

- Predict clinical complications in primary immune deficiencies
 - impact on patient treatment (profylaxis, antibiotics, steroids, ...)
- Secundary immune deficiencies
 - **Database**: Immune monitoring after a fixed time of standard immune suppression
 - + clinical follow-up of patient
 - Predict whether patient is at risk for complications

Central Diagnostic Laboratory:

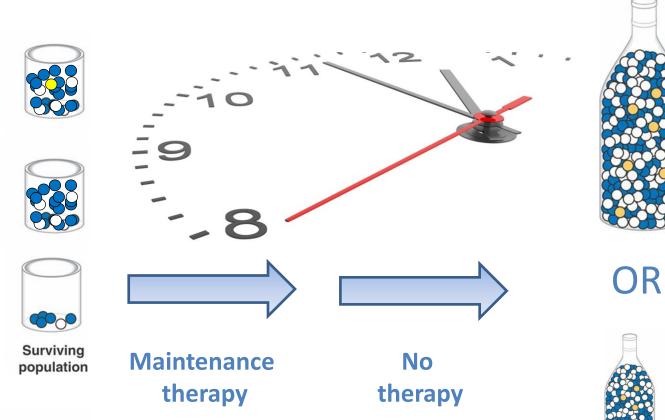
NCJ de Wit J Damoiseaux J Vanderlocht

LC Van Eyndhoven GRDT Van Hulst A. Camman

Internal medicine

Infectious diseases: SH Lowe A. Oude Lashof

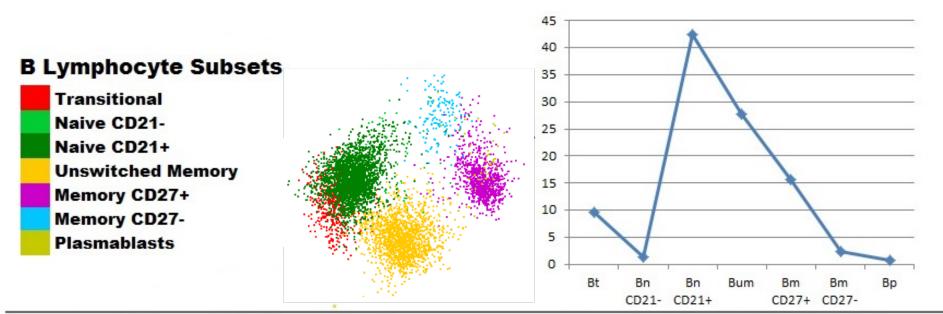
Clinical immunology P. Van Paassen J. Potjewijd C. Nieuwhof


Euroflow consortium:

Prof. dr. JJM van Dongen Prof. dr. M van der Burg

Type of clinical complication	Prevention	Screening	Treatment
Infectious	Ig replacment; prophylactic antibiotics; vaccination	Patients' awareness; sputum monitoring; routine visits	High dose lg; threaputic antibiotics
Pulmonary	Control of infection; high dose Ig	Spirometry; HRCT; routine visits	Endoscopic sinus surgery; inhaled corticosteroids; anti-inflammatory antibiotics; IL-2 therapy; B ₂ agonists; leukotriene receptor antagonists; lung transplantation
Lymphoproliferative	-	Lymph nodes biopsy; spirometry; imaging; routine visits	Systemic corticosteroids; hydroxychloroquine; immunosuppressive agents
Autoimmunity	Ig replacment?	CBC, diff PBS; thyroid examination and thyroid function; routine visits	Corticosteroids; anti-CD20 monoclonal antibodies; TNF-α inhibitors
Gastrointestinal	Control of infection, autoimmunity and lymphoproliferative complications	Upper and/or lower endoscopy and yearly ultrasonography; routine visits	Immunomodulators; TNF- α inhibitors
Neopelasis	Helicobacter pylori eradication; decreasing unnecessary irradiation	Routine cancer screening; screening by endoscopy; bone marrow examinations	Routine chemotherapy; rituximab protocols; surgical modalities; allogeneic stem cell transplantation
CBC: Complete blood count;	HRCT: High-resolution computed tomography;	Ig: Immunoglobulin; PBS: Peripheral bloo	d smear.
Medscape		Source: Expert Rev of	Clin Immunol © 2013 Expert Reviews Ltd

- **Outpreactive T cells**
- CD4⁺ T cells
- \bigcirc CD8+ T cells


Immune status

Visualization of Data

APS B Lymphocytes

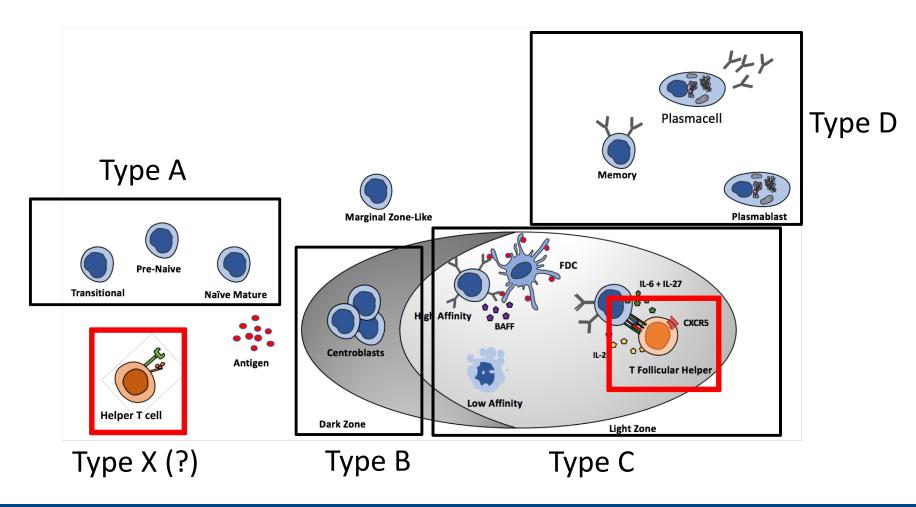
Automatic Population Separator

CSP B Lymphocytes

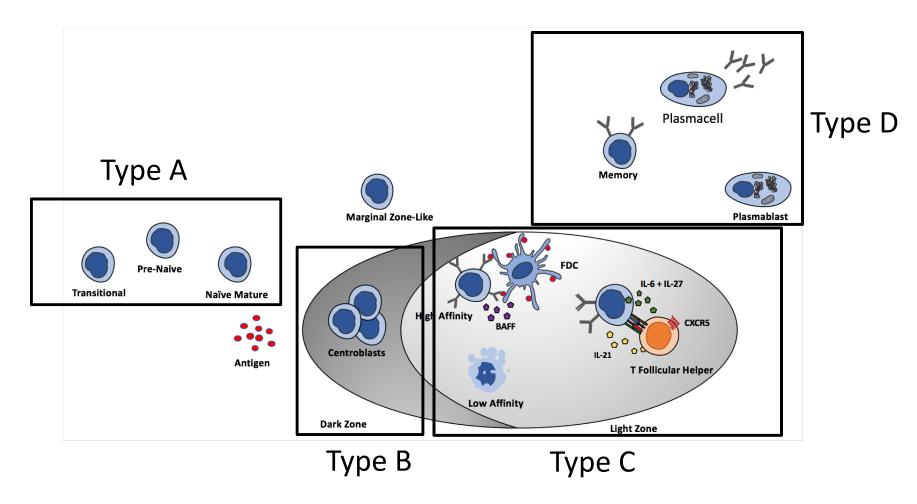
Connected Subsets Pattern

Clinical characteristics

	TACI (1950)	CVID X (1971)
IgG	< 1,1 g/L	< 1,1 g/L
IgA	< 0,5 g/L	< 0,1 g/L
IgM	< 0,1 g/L	0,17 g/L
Infections	Sinopulmonary	Sinopulmonary Gastro-intestinal
Auto immune disease	-	-
Granulomatous infiltration	-	-
Lymphadenopathy/ Splenomegaly	Splenomegaly	Generalized + splenomegaly
Malignancies	Hodgkin	- (WES nl)



Why use flowcytometry as a first step in the diagnostics of PID?


- 1. Application of flow cytometry in SCID
- 2. Current application of flow cytometry in CVID
- 3. Future applications of flow cytometry in CVID

Defective B lymphocyte maturation in CVID

💙 Maastricht UMC+

Defective B lymphocyte maturation in CVID

