

Immune monitoring in cancer patients following treatment with anti-PD-1 antibody

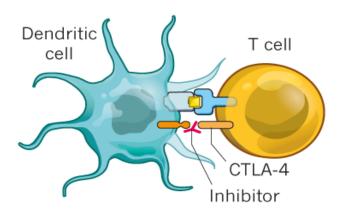
NSCLC patients not responding to nivolumab show lowered frequency of co-stimulatory receptor-deficient CD8 T cells

PD-1, programmed cell death protein 1, aka CD279

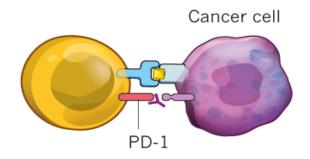
- Cell surface receptor
- Expressed mainly on T cells and is induced by T cell activation
- Two ligands: PD-L1 and PD-L2
- Down-regulates T cell activation
- Acts as checkpoint to guard against autoimmunity

Erasmus MC z afus

Cancer immunologists scoop medicine Nobel prize


One of the hottest areas in cancer research, immunotherapy can dramatically extend lives

IMMUNE BOOST

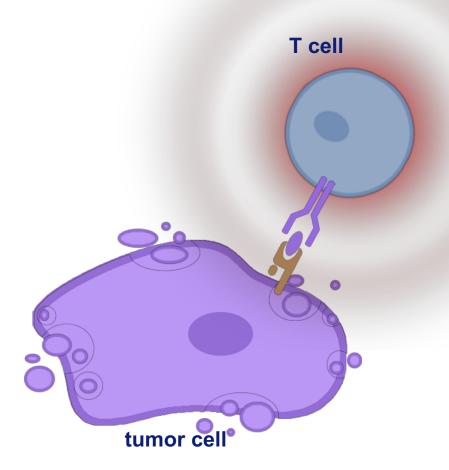

Several methods are showing promise in helping immune sentinels called T cells to attack cancer.

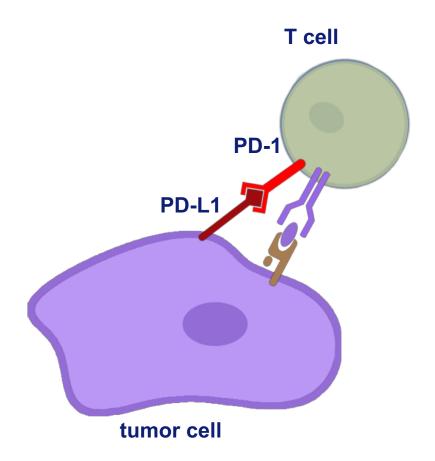
CHECKPOINT INHIBITOR DRUGS

'Checkpoint' proteins block T-cell activity. Inhibitor drugs can release the brakes on T cells at different stages.

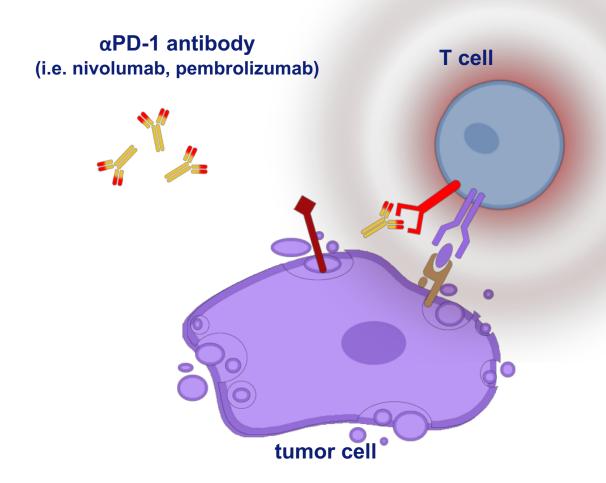
The CTLA-4 checkpoint protein prevents dendritic cells from priming T cells to recognize tumours. Inhibitor drugs block the checkpoint.

The PD-1 checkpoint protein prevents T cells from attacking cancer cells. The inhibitor drug allows T cells to act.


onature

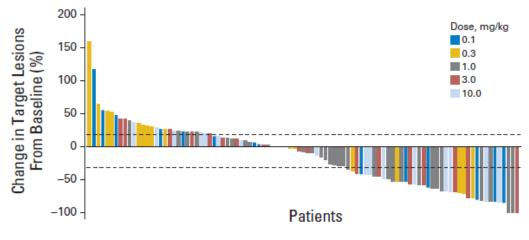


Erasmus MC 2 of us


Erasmus MC z afuns

Erasmus MC z afuns

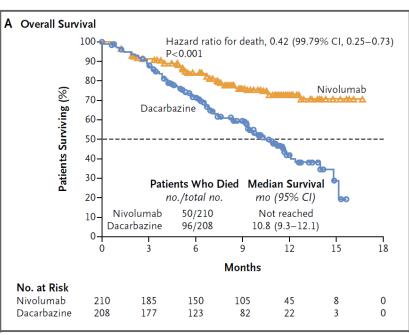
Erasmus MC z afung



αPD-L1 antibody (i.e. Atezolizumab, Durvalumab, Avelumab)

Erasmus MC 2 afrus

Nivolumab – first clinical data in advanced melanoma

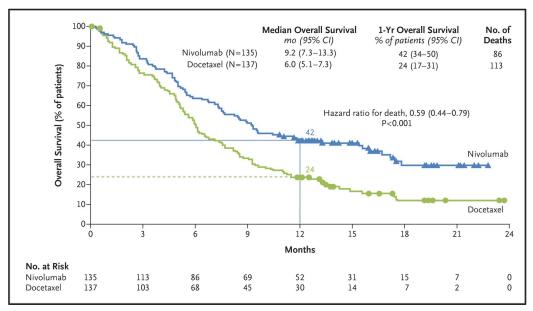

Survival, Durable Tumor Remission, and Long-Term Safety in Patients With Advanced Melanoma Receiving Nivolumab

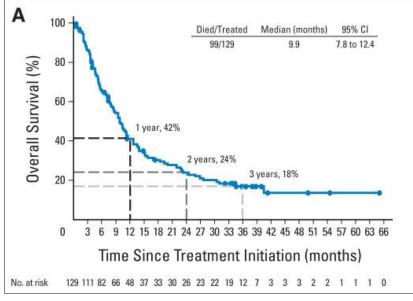
Overall response rate after ipilimumab*: 31%

Topalian et al. JCO, 2014

Melanoma without BRAF Mutation

Nivolumab in Previously Untreated


Overall response rate as frontline therapy 40%


Robert et al. NEJM, 2015

Erasmus MC

^{*} anti-CTLA4 mAb (BMS)

Anti-PD-1 Immune Therapy in NSCLC – Promises and Challenges

Brahmer, N Engl J Med, 2015

Gettinger, J Clin Oncol, 2015

- increased overall survival compared to standard treatment
- approved by FDA and EU in cancer types of multiple origins

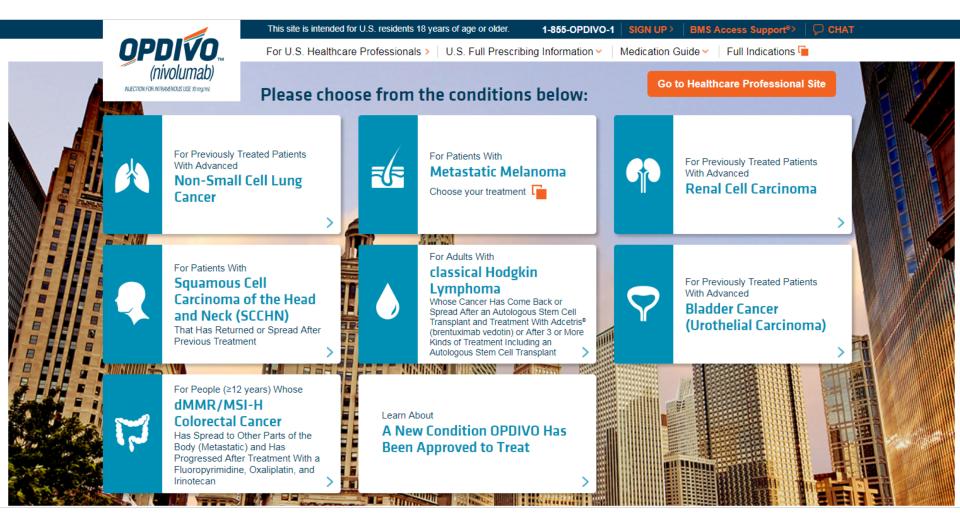
FDA and EU-approved Immune Checkpoint Inhibitors (ICI) Available in The Netherlands

Anti-CTLA4 Yervoy® Ipilimumab (Bristol-Myers Squibb)

Anti-PD-1 Opdivo® Nivolumab (Bristol-Myers Squibb)

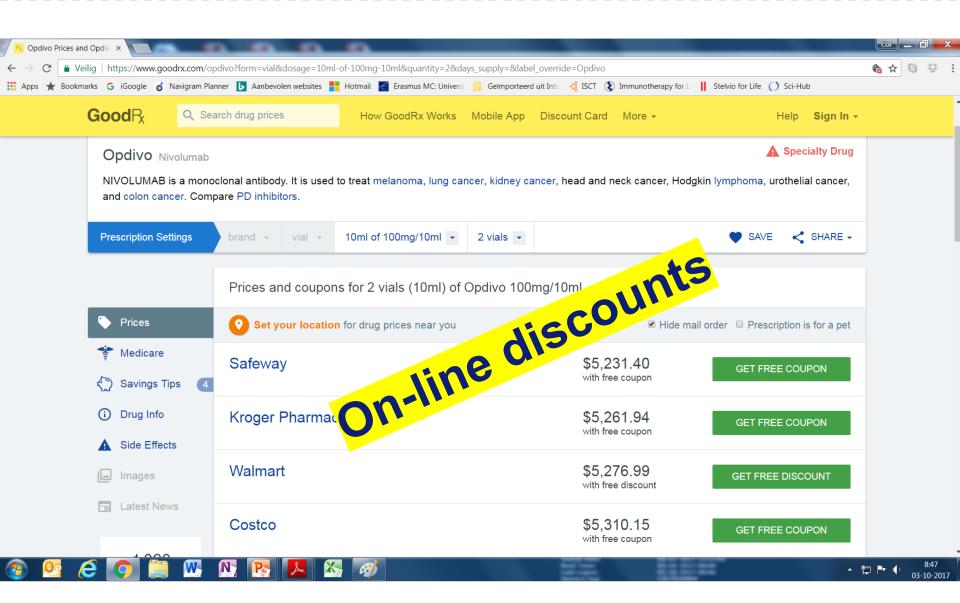
Keytruda® **Pembrolizumab** (Merck)

Anti-PDL-1 Tecentriq® Atezolizumab (Roche)


Imfinzi® Durvalumab (Astra Zeneca)

Bavencio® Avelumab (Merck Pfizer)

These drugs are increasingly gaining first-line indications



PD-1 inhibitor therapy has become big business

Bristol-Myers Squibb website

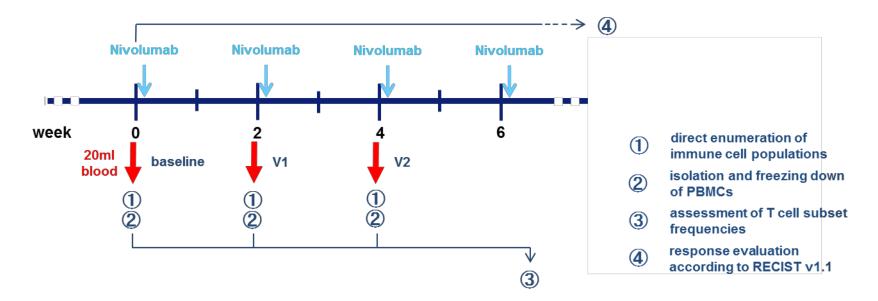
Erasmus MC

Current challenges of PD-1 treatment

- ➤ Many patients do not demonstrate clinical benefit
- ➤ Many patients show clinical toxicities
- Costs of patient treatment are high

Hypothesis

Frequencies of immune cells and their subset distributions in blood predict response to PD-1 treatments and facilitate treatment stratification


Blood Parameters are Associated with Clinical Response to Immune Checkpoint Inhibitors

Marker	ICI therapy	Cancer	N	Study results	Reference
Lymphocyte count	Ipilimumab Ipilimumab	Melanoma Melanoma	51, 73 82, 40	\geq 1000 per μ l at week 6 → ↑ OS ↑ At 2–8 weeks vs baseline → ↑ response	(Delyon et al, 2013; Ku et al, 2010) (Bjoern et al, 2016; Martens et al, 2016b)
	Ipilimumab <mark>Nivolumab</mark>	Melanoma Melanoma	95 98	↑ At week 12 vs baseline \rightarrow ↑ OS \geqslant 1000 per μ l at week 3-6 \rightarrow ↑ OS	(Simeone et al, 2014) (Nakamura et al, 2016)
Relative lymphocyte count	Ipilimumab Pembrolizumab	Melanoma Melanoma	209 <mark>616</mark>	↑ Baseline → ↑ OS ↑ Baseline → ↑ OS	(Martens et al, 2016a) (Weide et al, 2016)
Total leucocyte count	Ipilimumab	Melanoma	59	↓ Baseline → ↑ response	(Gebhardt et al, 2015)
Eosinophil count	Ipilimumab Ipilimumab Ipilimumab	Melanoma Melanoma Melanoma	209 59 73	↑ Baseline → ↑ OS ↑ At week 3 vs baseline → ↑ response ↑ At week 6 vs baseline → ↑ OS	(Martens et al, 2016a) (Gebhardt et al, 2015) (Delyon et al, 2013)
Relative eosinophil count	Pembrolizumab	Melanoma	616	↑ Baseline → ↑ OS	(Weide et al, 2016)
Neutrophil count	Ipilimumab Ipilimumab Nivolumab	Melanoma Melanoma Melanoma	59 720 <mark>98</mark>	↓ Baseline → ↑ response ↓ Baseline → ↑ PFS and OS < 4000 per μ l at week 3–6 → ↑ OS	(Gebhardt et al, 2015) (Ferrucci et al, 2016) (Nakamura et al, 2016)
Neutrophil/lymphocyte ratio	Ipilimumab Ipilimumab Nivolumab	Melanoma Melanoma NSCLC	58, 185 187 <mark>175</mark>	 ↓ Baseline → ↑ OS ↓ Baseline → ↑ PFS and OS ↓ Baseline → ↑ OS 	(Khoja et al, 2016; Zaragoza et al, 2016) (Ferrucci et al, 2015) (Bagley et al, 2017)
Derived neutrophil/ lymphocyte ratio	Ipilimumab	Melanoma	720	↓ Baseline → ↑ PFS and OS	(Ferrucci et al, 2016)
Monocyte count	Ipilimumab	Melanoma	209	↓ Baseline → ↑ OS	(Martens et al, 2016a)

MULTOMAB

(prospective saMpling in intravenoUsLy Treated Oncology patients: Monoclonal AntiBodies)

Collaborations:

Translational Pharmacology (group Mathijssen)
Pulmonary Diseases (group Aerts)

Patient numbers per October 2018:

Melanoma: >150 NSCLC: >250

Also other tumor types

Efforts:

- Collection of patient blood pre- and post-treatment
- ➤ Processing/storage of whole blood, serum, PBMC, DNA/RNA
- Measurement of antibody levels in sera (pharmacokinetics)
- Measurement of immune cells in whole blood /PBMC (immune profiling)
- > Clinical patient evaluation (tumor burden, toxicity, response)

Erasmus MC rafus

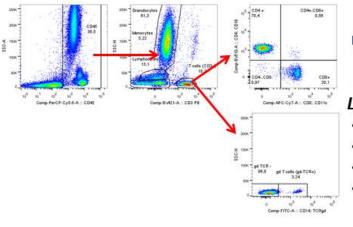
Immune monitoring – methods applied

A) Blood processing

1. Immediate Analysis on Whole Blood (<24h)

2. Isolation and Cryopreservation of PBMC

3. Storage of Plasma


4. Storage of Whole blood DNA/RNA

B) Multiplex flow cytometry (12colors)

FACS Celesta

- > Enumeration of 18 immune cell subsets
- > Assess expression of T cell markers for:
 - Maturation
 - Co-stimulation
 - Co-inhibition
 - Chemokines
 - Total of 300 combinations

C) Absolute numbers and T cell markers

Lymphocytes:

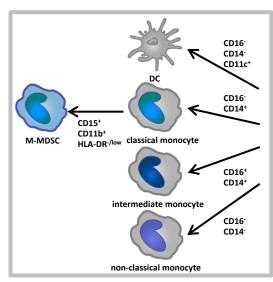
- · B cells
- NK cells
- · T cells
- yδ T cells

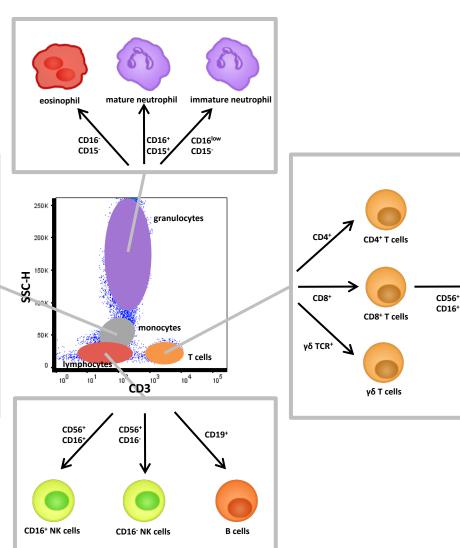
Granulocytes:

- Eosinophils
- Immature neutrophils
- Mature neutrophiles
- PMN-MDSCs

Monocytes:

- Classical monocytes
 - M-MDSCs
- · Intermediate monocytes
- · Non-classical monocytes
- · Dendritic cells


Erasmus MC

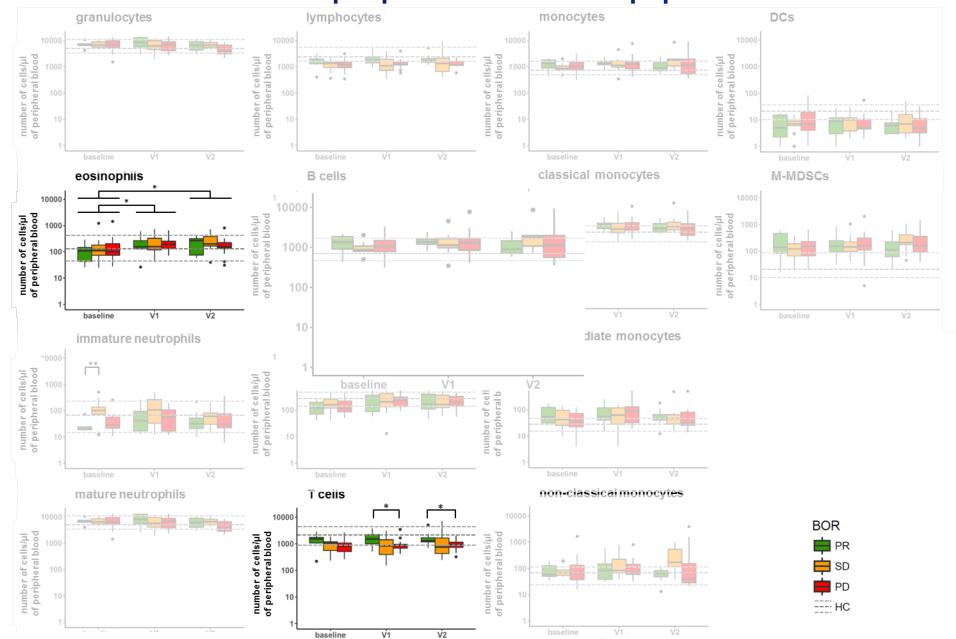

zafuns

Flow Cytometric Analysis of Blood

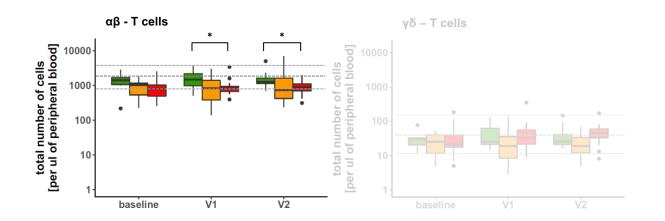
12-color flow cytometry

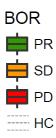
enumeration of 18 immune cell populations

NK T cells


Exploratory Cohort

Tumor type:		NSCLC
Treatment*:		Nivolumab, Q2W, 3mg/kg
Median age in years (ra	inge):	65 (35-79)
Sex: - female - male		30 (42.3%) 41 (57.7%)
BOR: - progressive dis - stable disease (- partial respons	SD)	32 (45.1%) 25 (35.2%) 14 (19.7%)
Median follow-up in da	ys (range):	242 (35-544)
WHO performance statu	ıs: 0 1 unknown	16 (22.5%) 37 (52.1%) 18 (25.4%)
Histology of primary lung tumor:	adenocarcinoma squamous cell carcinoma great cell carcinoma	48 (67.6%) 21 (29.6%) 2 (2.8%)


^{*} all patients received platinum-based pre-treatment

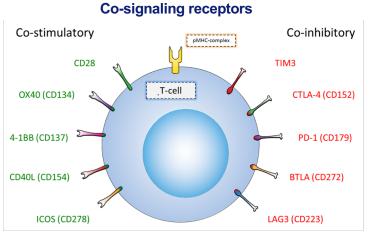


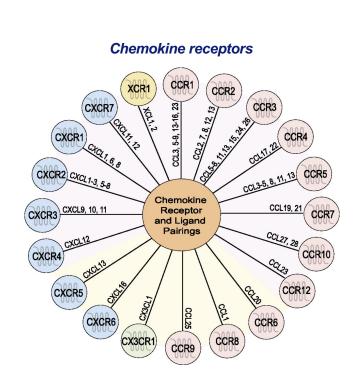
Nivolumab treatment in general does not result in changed numbers of peripheral immune cell populations

Patients responding to nivolumab show high numbers of CD8 T cells

Erasmus MC z afuns

Flow Cytometric Analysis of Blood


12-color flow cytometry


- enumeration of 18 immune cell populations
- assess expression of T cell markers for: maturation, co-stimulation, co-inhibition and chemokines (>300 combinations)

granulocytes monocytes T cells

CD3

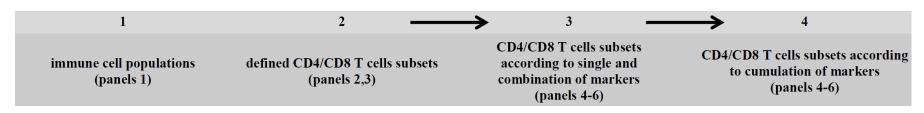
Naive T cell

T_{EM} cell

T_{Eff} cell

Differentiation

 T_{CM} cell


T_{SCM} cell

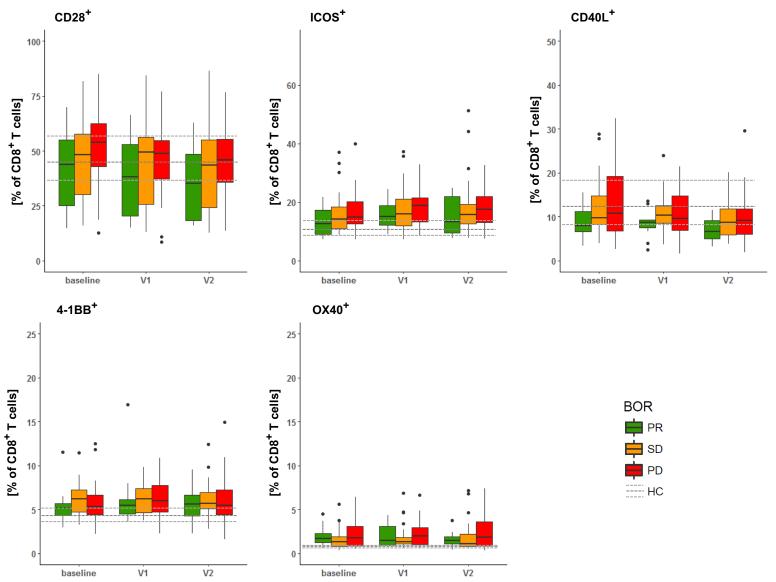
Multiplex flow cytometry – panels 2-6

2 ^b	T cell proliferation/ regulatory T cell markers	Ki67, CD25, FOXP3, PD-1
3 ^b	T cell maturation markers	CCR7, CD45RA, CD95, CD69, CD27, CD103
4 ^b	T cell co-inhibitory receptors	CD57, LAG3, BTLA, PD-1, TIM3
5 ^b	T cell co-stimulatory receptors	CD28, OX40, 4-1BB, CD40L, ICOS
6 ^b	T cell chemoattractant receptors	CXCR3, CXCR4, CCR1, CCR4, CCR5

^b assessment of T cell subset frequencies in PBMC samples

Multiplex flow cytometry – analysis work scheme

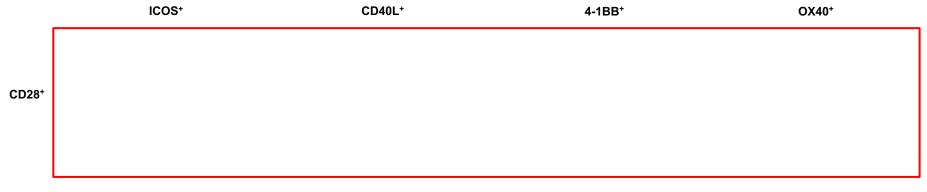
Erasmus MC


Patients with PR show enhanced frequencies of CD8 T cells with CD45RA+CCR7- and CD95+CD69- phenotypes

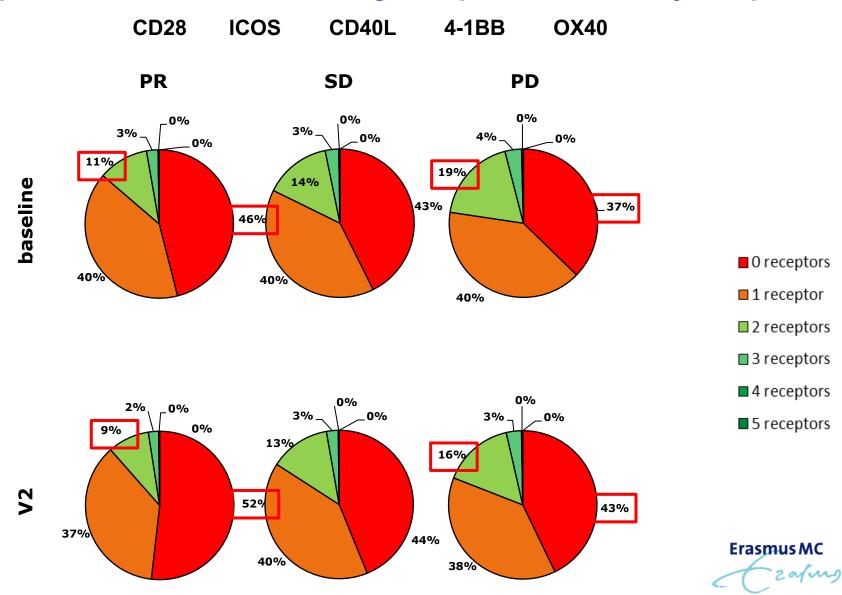
These observations suggest a role for differentiated/tissue-egressed (possibly antigen experienced) CD8 T cells

Erasmus MC z afuns

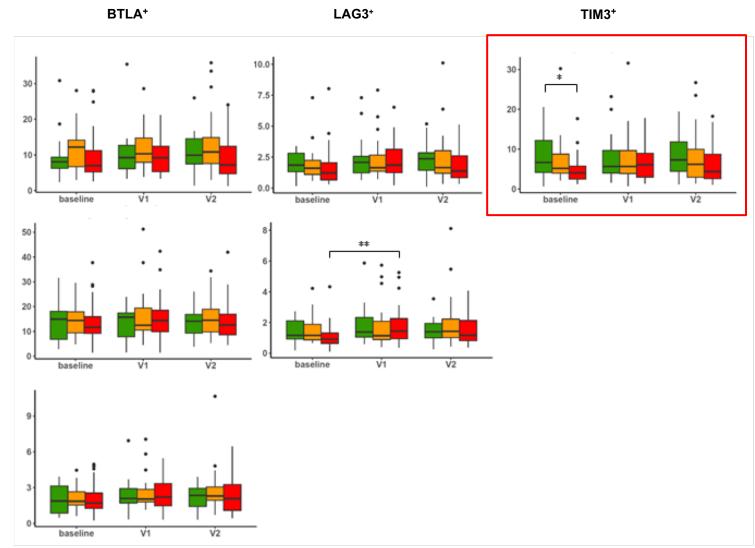
Individual co-signaling receptors do not predict response


us MC

OX40⁺


4-1BB+

CD40L+


Patients with PR display reduced frequencies of CD8 T cells co-expressing CD28 and CD40L, ICOS or ICOS

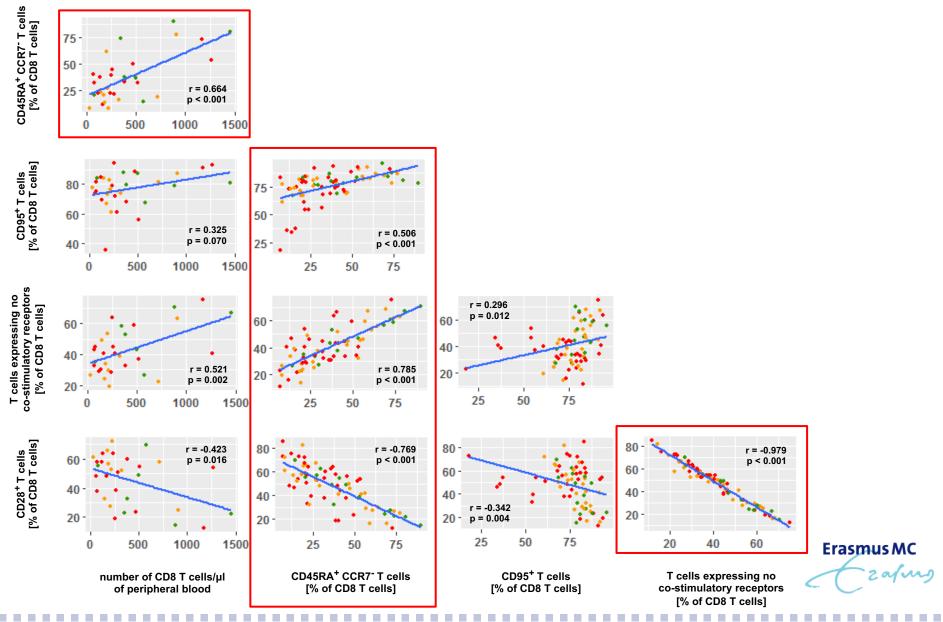
Patients showing response to therapy are characterized by higher frequencies of CD8 T cells lacking multiple co-stimulatory receptors

Patients with PR display enhanced frequencies of CD8 T cells co-expressing PD-1 and TIM-3

Cells double-positive for indicated receptors [% +CD8+ T cells]

PD-1+

TIM3+


LAG3⁺

Erasmus MC

zafus

Observations suggest a decrease function of CD8 T cells

Number and differentiation phenotypes of CD8 T cells in PR patients are correlated to lack of co-stimulatory receptors

Summary:

NSCLC patients with partial response to nivolumab display at baseline:

- higher numbers of CD8⁺ T cells
- enhanced frequency of terminally differentiated CD8⁺ T cells (CD45RA⁺CCR7⁻ and CD95⁺CD69⁻
- enhanced frequency of CD8⁺ T cells devoid of co-stimulatory receptors (CD28⁻ ICOS⁻ CD40L⁻ 4-1BB⁻ OX40⁻)
- enhanced frequency of CD8⁺ T cells co-expressing co-inhibiting receptors PD1 and TIM3
- → NSCLC patients responding to nivolumab have enhanced frequency of CD45RA+CCR7- CD8 T cells lacking co-stimulatory receptors
- → NSCLC patients responding to nivolumab appear to possess more antigen-experienced T cells

Next steps:

- Correlate findings with overall and progression free survival
- Investigate whether this profile is also found in other tumor types
- Correlate immune profiles with treatment-related toxicity
- Correlate immune profiles with nivolumab pharmacokinetics

Erasmus MC z afung

Acknowledgements

Laboratory of Tumor Immunology, Department of Medical Oncology

- Cor Berrevoets
- Mandy van Brakel
- Merle van Geldrop
- Priscilla de Graaf
- Dora Hammerl
- Dian Kortleve
- Yarne Klaver
- Andre Kunert
- Cor Lamers
- Pim Mutsaers
- Astrid Oostvogels
- Chumud Phantunane
- Maud Rijnders
- Luc Veenman
- Bas Weening
- Rebecca Wijers
- Reno Debets

Laboratory of Translational Pharmacology, Department of Medical Oncology

- Edwin Basak
- Daan Hurkmans
- Stijn Koolen
- Ron Matthijssen

Department of Pulmonary Diseases

- Joachim Aerts

Department of Medical Oncology

- Astrid van der Veldt
- Stefan Sleijfer

